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NUMERICAL STUDY OF WAVE PROPAGATION IN A NON-UNIFORM FLOW

ALEX POVITSNY*

Abstract. The propagation of acoustic waves originating from cylindrical and spherical pulses, in a

non-uniform mean flow, and in the presence of a reflecting wall is investigated by Hardin and Pope approach

using compact approximation of spatial derivatives. The 2-D and 3-D stagnation flows and a flow around

a cylinder are taken as prototypes of real world flows with strong gradients of mean pressure and velocity.

The intensity and directivity of acoustic wave patterns appear to be quite different from the benchmark

solutions obtained in a static environment for the same geometry. The physical reasons for amplification and

weakening of sound are discussed in terms of dynamics of wave profile and redistribution of acoustic energy

and its potential and kinetic components. For an acoustic wave in the flow around a cylinder, the observed

mean acoustic pressure is approximately doubled (upstream pulse position) and halved (downstream pulse

position) in comparison with the sound propagation in static ambient conditions.

Key words, aeroacoustics, non-uniform mean flow, higher-order compact scheme, amplification of

sound, stagnation flow, flow around cylinder

Subject classification. Fluid Mechanics

1. Introduction. This study investigates numerically the influence of strong mean flow gradients on

the directivity and strength of sound waves propagating in such a flow.

The goal of this study is to get computational insight into physical mechanisms of angular redistribution

of acoustic energy and acoustic pressure. The considered mean flows include potential flow around a circular

cylinder, the 2-D and 3-D stagnation flows, and a 90 ° corner flow. These idealized mean flows mimic real

world flows in areas of strong sound reflection and generation such as a leading edge of a wing or a turbine

blade, a protruding corner of a wall cavity, a wing-fuselage intersection, an impingement area of a jet, and

a flow behind a bluff body.

The amplification or weakening of sound propagating in non-uniform flows has attracted considerable

attention of researchers. However, available computational studies are mainly restricted to one-dimensional

mean flows.

For one-dimensional flow in a duct with variable cross-section, the acoustic pressure appears to con-

centrate towards the duct centerline or the duct wall for upstream and downstream sound propagation,

respectively [11], [15]. Motivated by engine noise, the authors of these studies use the wave envelope method

(WEM) to study propagation of sound in one-dimensional and quasi one-dimensional mean flows This method

is based on consideration of the governing acoustic variables as sums of harmonics. Additional assumptions

are made about rapid axial oscillations and slowly varying amplitude and phase corrections caused by the

non-uniformity of the flow.

Atassi and Grzedzinsky [2] considered propagation of unsteady disturbances in flows around bodies

with a stagnation point. For incompressible mean flows, the aeroacoustic problem is formulated in terms

of an integral equation of the Fredholm type. The considered streamlined body and the corresponding
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potentialmeanflowresultfromsuperpositionofa uniformflowanda source.Yet,additionalassumptions
andsimplifications(someofthemdependonthetypeofpotentialbackgroundflow)areneededto perform
integration.Authors[2]presentthedisturbancepressurealongthestagnationstreamlinethatshowsincrease
ofthedisturbancepressureforanupstreamharmonicdisturbance.

HardinandPopeapproach[7]impliesconsiderationof a flowfieldasa sumof themeanvelocityand
a disturbancefieldandsolutionof disturbancevariablesin timeandspacedomainby explicitintegration
in timeanduseof appropriatespatialdiscretization.Thecomputationalmethodologyusedin thecurrent
studyisbasedonaboveapproach.

In orderto useananalyticalsolutionfor meanflow,theflowin thecurrentstudyis assumedto be
potential,i.e.,inviscidandincompressible.Thespeedof sound(relativeto the localmeanflowvelocity)is
assumedto beequalto unity.TheseassumptionsarefairunlesstheMachnumberexceeds0.5.

In this paper,therelativeorientationof the directionof wavepropagation,meanpressuregradient,
andthe meanflowvectorarestudiedto showthe amplificationor weakeningof the acousticpressure.
Theconsiderationstartswith two-dimensionalstagnationmeanflows,thentheapproachis expandedto
three-dimensionalstagnationmeanflows,and,finally,appliedto theinviscidflowaroundcircularcylinder.

In all consideredcases,theobtainedacousticpressureiscomparedwith that forthewavepropagation
understaticambientconditionsandforthesamegeometryof surroundingrigidboundaries.

Variationofdirectivityofacousticpressureimplieschangesindirectivityofacousticenergyincomparison
with thesoundpropagationunderstaticambientconditions.Thispaperstudiesangularredistributionof
acousticenergyandits potentialandkineticcomponentsin non-uniformmeanflows.Theacousticenergy
isasumofpotentialandkineticcomponentswherethepotentialenergyiscloselyrelatedto theaveraged-
in-timerootmeansquareofacousticpressurewhichisusuallymeasuredbyexperimentalistsasanindicator
ofnoiseintensity.

Ourrecentstudy[12]showsthatthegenerationofsoundwavesoriginatedfromentropysourcesiscaused
bybaroclinicgenerationofdisturbancevorticityasaresultofinteractionofthemeanflowpressuregradient
andthewavedensitygradient.In turn,thisgeneratedvorticitycausesthegeneration(orsink)of acoustic
energybythesourcetermin theacousticenergyequation.Orderofmagnitudeanalysissuggeststhat the
sourcetermcannotbeneglectedin theacousticenergyequation.Thisstudypresentsvorticityandenergy
sourcetermsobtainedfromnumericalsimulation.Forthe propagationof acousticwavesoriginatedfrom
anacousticpulse(asopposedto thesoundgenerationfromentropyor vorticitypulses[12]),Themajor
effectof thenon-uniformityofthemeanflowonthewavepropagation(asopposedto thewavegeneration
fromentropyorvorticitypulses[12])is theangularredistributionofacousticenergyandkinetic-to-potential
transformwhereasthenewlygeneratedacousticenergyappearsto beminor.

Thearticleis built asfollows.In Section2, thewavepropagationoriginatedfroma cylindrical2-D
sourcein 2-Dstagnation-typeflowsisstudiedandnumericalresultsaboutamplificationof acousticpres-
sure,alternationof wavepattern,andacousticenergyredistributionarepresented.In Section3,thewave
propagationfromasphericalsourceisconsideredin 3-Dstagnationflows.Thesymmetric3-Dstagnation
flowwithasinglestagnationpointandthe3-Dstagnationflowwithstagnationlineflowaretakenastypical
representativesofthree-dimensionalstagnationmeanflows.In Section4,theinviscidflowaroundacircular
cylinderis consideredfor varioussubsonicMachnumbersof the meanflow. Amplificationof sound(for
upstreamwavepropagation)andweakeningof sound(fordownstreamwavepropagation)isstudiedin this
Section.



2. Soundpropagationin a 2-D stagnation-typemeanflow. Thecommontypeofmeanflowis
that theflux acrossa givensurfaceis equalto zero,eitherbecausethe surfaceis a symmetrysurfaceor
becausethesurfaceis theboundaryof arigidbody[3].If twostraightzero-fluxboundariesintersectingat
anangle_/n thestream-functionfieldfor incompressibleflowisgivenby

¢ = Arnsin(nO), (2.1)

where (r, 0) are polar coordinates. Note that ¢ = 0, if 0 = 0 or 0 = _/n. For example, the 2-D stagnation

flow

U = x, V = -y (2.2)

is a union of two flows with n --- 2 where the dividing streamline is the symmetry axis of the flow.

Introducing a disturbance, instantaneous velocities and density are considered as sums of the known

steady incompressible mean flow (see above) and the unsteady compressible isentropic disturbance

u = U +ul, v = V + vl,p = P+pl, p = 1+ pl. (2.3)

The normalized speed of sound is assumed to be equal to unity and, therefore, pressure and density distur-

bances are equal for acoustic pulse. Substituting above sums to the Euler equations, the dynamic equations

for unsteady (disturbance) components of mass and momentum fluxes are obtained

qt _- fx _- gy : 0, (2.4)

where

( ) ( )q= (l + pt)(U + ut) , f= (l + pt)(U + ut)2 + (P + pt) , g=

(1 + pl)(V + vl) (1 + pl)(U + ul)(V + vl)
(1 + p,)(V + v,)

(1 + p,)(U + u,)(V + v,)

(1 + p,)(V + v,) 2 + (P + p,)

The equations are linearized and solved with respect to unknown disturbance variables in space-time

domain

op u ou v ou ou ou
Or- Ox Ox Ox U - Oy _y V - V _y p - U _x p,

op - ov ov ov ov

The spatial derivatives of the mean flow variables for arbitrary n are presented in Appendix A. The non-linear

set of equations for the 2-D stagnation mean flow is presented in our study [12].

2.1. Numerical algorithm and the code validation. The solution is advanced in time in five sub-

stages per time step using a low-storage explicit-in-time fourth-order Runge-Kutta (RK) scheme scheme

proposed by Williamson [16] and implemented by Wilson et al. [17].

The spatial derivatives of unknown disturbance variables are approximated using compact finite differ-

ence schemes [10] applied to natural variables u/, v/and p/

, , , a b
o_Ui_ 1 "-_ U i --_ o_Ui__ 1 = - (Ui__ 1 - Ui_i) --_ _T-(Ui__2 - Ui_2) , (2.7)2Ax



where Ui_l, Ui, and Ui+ 1 are unknown derivatives at grid nodes i - 1,i, and i + 1, Ax is the grid step and

Ui-2, ..., Ui+2 denote values of variable U at grid nodes i - 2, ...,i + 2. The values of U are taken from the

previous stage of the RK scheme. Here the classical fourth-order Pad_ compact scheme (a = 0.25, a = 1.5

and b = 0) which has a tridiagonal matrix for the right and left sides of (2.7) is used.

At all boundaries but a rigid plate characteristic inflow or outflow boundary conditions are applied

to disturbance variables. At a rigid surface, reflection boundary conditions are used for pressure distur-

bance and for the parallel to the surface component of velocity disturbance whereas the normal to the rigid

surface component of velocity is taken equal to zero. Discretization of spatial derivatives in the direction

perpendicular to a boundary are computed by one-sided finite differences at all boundaries [4].

The system (2.7) with near-boundary one-sided differences is solved by version of Gaussian elimination

for narrow banded systems known as the Thomas algorithm [9] applied to each line of numerical grid in all

spatial directions.

To validate the code against the known analytical solution [8], the static ambient conditions (i.e., the

mean flow velocity is equal to zero) are taken. In this case, the right-hand side of system (2.6) is simplified

as follows

au Op
Ot Ox

av Op

Ot Oy

Op Ou Ov

Ot Ox Oy

The initial 2-D cylindrical acoustic pulse is given by

(2.8)

p--p-- expr,_d2(x- xc)2+ 1, (2.9)
L a J

where c -- 0.01, a -- ln(2)/9, d-- 60 is the normalization coefficient, (Xc, Yc) is the pulse center coordinates.

To check the symmetry of solution, the computational domain is taken as a union of [-1, 1] x [-1,0]

and [-1, 1] x [0, 1] subdomains separated by a rigid flat plate located at y = 0. The couple of initial pulses

(2.9) is located at (0, ±0.25). Isolines of acoustic pressure for this problem at 160 x 160 grid per subdomain

are presented in Fig. 1 at t -- 0.5. The isobar values are uniformly distributed between the maximum and

minimum of acoustic pressure. Although the Thomas algorithm is, strictly speaking, non-symmetric (as any

Gaussian elimination), the acoustic pressure field in Fig. la is perfectly symmetric.

The results of grid refinement study are presented in Fig. lb for [-1, 1] x [0, 1] computational domain

covered with 80 x 80,120 x 120, and 160 x 160 numerical grids. The visible wiggles exist only for the coarse

grid and the solution approaches the analytical solution including most critical points of the maximum and

minimum of the reflected wave. For the transmitted wave, the numerical solution practically coincide with

the analytical solution [8] for finer grids. Therefore, the grid 160 x 160 has been adopted in this study.

2.2. Distribution of acoustic pressure. To study the acoustic pressure distribution in a non-uniform

flow, the 2-D stagnation inviscid mean flow is taken as an example (Case 2-A). The velocity field of the

stagnation mean flow and isobars of the initial acoustic pulse, centered at (0, 0.25), are presented in Fig. 2a

(left). The speed of sound is equal to unity and is presented in Fig. 2a for scale. As far as the stagnation

flowfield satisfies Eq. (2.2), the Mach number at a point is equal to the local distance from the origin, i.e.,

the Mach number at the location of the center of initial pulse is equal to 0.25.



Thepropagationof soundisdescribedbythesystem(2.6)wherethemeanflowis givenby (2.1)with
n = 2. Grid refinement study for Case 2-A is presented in [12] and shows that the results on the 160 x 160

and 200 x 200 grids are quite closed to each other that confirms the use of the former grid for simulations.

The isobars of acoustic pressure are presented in Fig. 2a (right) at t = 0.5. Approximate centerline

coordinates of the maximums of acoustic pressure for the transmitted and reflected waves are 0.5 and 0.25,

respectively. Note that the Mach numbers at these points are equal to their y- coordinate values (see above).

As expected, the acoustic isobars obtained in the static ambient conditions, denoted here as Case 2-B, (Fig.

la) are different from those in the Case 2-A at the same time moment. In the Case 2-A, the y-coordinate

of the wave front at the neighborhood of the centerline is smaller and the x-coordinate of the wave front

near the wall is larger than those in the Case 2-B. The explanation is straightforward and is based on the

fact that the speed of sound in a steady frame is equal to c + U, where c is the local speed of sound and U

is the local velocity of the flowfield.

The density of isobars is larger at the neighborhood of the centerline and smaller near the wall in the

Case 2-A in comparison with those in the Case 2-B. In Fig. 3a, the acoustic pressure profiles at the centerline

are presented for both cases at t = 0.5. The maximum absolute value of acoustic pressure is approximately

80% larger for the transmitted wave and two times larger for the reflected wave than those in the Case 2-B.

Recall, that the speed of wave propagation is c + U. While the wave propagates upstream the decelerating

subsonic flow, its front moves slower than its back. The situation is opposite for the accelerating flow (which

is the case near the wall). Thus, the wave front becomes narrower at the neighborhood of the centerline and

wider while the stagnation flow spread along the wall in comparison to those in static ambient conditions.

Accelerating mean flow (backward 2-D stagnation flow) is considered to study the influence of the

mean flow direction on the wave patterns (Fig. 2b). The initial position of acoustic pulse, the mean flow

streamlines and the mean pressure distribution remain the same as for the Case 2-A. (compare Fig. 2b with

Fig. 2a). However, the direction of the maximum acoustic pressure has been considerably changed from

being perpendicular to the wall to being parallel to it. Still, the maximum acoustic pressure corresponds to

the direction where the sound propagates upstream of the mean flow.

To study the influence of the background flow while the acoustic pulse is located off the centerline and

two reflecting surfaces are present, the 90 °- corner geometry is considered (Fig. 7). The rigid plains coincide

with the Cartesian axis. The potential flow in this geometry is described by a single stagnation flow with

n = 2 flowing to the right. Initial position of acoustic pulse is taken (0.25, 0.25), where the local Mach

number of the mean flow is approximately equal to 0.35.

Computational results in terms of acoustic pressure are compared with those obtained in the Case 2-B.

In the latter case the maximum acoustic pressure is in the bisector direction and the cylindrical shape of

wave pattern is symmetric with respect to the bisector (Fig. 7b). In presence of the mean flow, the waves

flatten, especially in the neighborhood of the y-axis, where the sound propagates upstream of the mean

flow (Fig. 7a). The maximum acoustic pressure increases about 40% in comparison with that in the static

ambient conditions.

2.3. Distribution of acoustic energy. To get physical insight into amplification of acoustic pres-

sure, acoustic energy is considered here. Transport equation of acoustic energy density for irrotational and

incompressible mean flow and adiabatic acoustic disturbance is given by [6]:

cOE
0_- + VI = u,. (U × _,), (2.10)



where

istheacousticenergydensityand

istheacousticenergyflux.

E = pl2/2 + ul2/2 -_- plul. U (2.11)

l = (p_+ ul. V)(ul + p_V) (2.12)

The acoustic energy is a sum of potential energy Pot = pill2, that mimics the strength of acoustic

pressure in compressible media, and kinetic energy I4 = ut2/2 + plut. U.

The centerline distribution of E is presented in Fig. 3b, where the curve 1 corresponds to the Case

2-A and the curve 2 corresponds to the Case 2-B. For the reflected wave, the local maximum of E in the

Case 2-A is about three times greater than that in the Case 2-B. Its location is the same as that for the

maximum acoustic pressure (compare Fig. 3b to Fig. 3a) and the ratio of acoustic energies is similar to the

ratio of squares of acoustic pressures (four times). It is not the case for the transmitted wave, where the

maximum values of E are almost the same in cases 2-A and 2-B in spite of the obvious difference in the

acoustic pressure values.

To show the total acoustic energy along the centerline, the integrals

_0 y
IE = E(y)dy (2.13)

and

//IF = Pot(y)dy (2.14)

are plotted as functions of y at the time moment t = 0.5 in Fig. 3c. Obviously, the integrals reach their

maximum when the coordinate y exceeds the front coordinate of the transmitted wave. The values of these

maximums for integral of acoustic energy differ only by 15% whereas the difference in integrals of potential

energy is about two times. Thus, the amplification of sound along the centerline occurs mainly by increase

of the potential part in total acoustic energy.

On the contrary, for the bisector direction (45 °) and for a near-wall direction (75 °) the part of potential

energy remains approximately the same for the stagnation mean flow and for the static ambient conditions.

Therefore, the weakening of sound near the wall occurs mainly due to the angular redistribution of acoustic

energy. The direction-dependent behavior of acoustic energy is explained by the relative value of the last

term in (2.11). If sound propagates upstream of the mean flow, the vectors in the inner product ur. U are

collinear, therefore, the variation of U in a non-uniform mean flow leads to more prominent reduction of the

kinetic energy in comparison with other directions. The kinetic energy transforms into potential energy and

leads to increase of potential part in the acoustic energy.

To study the generation of acoustic energy by means of interaction of the wave with the non-uniform

mean flow, we present here the simplified form of the vorticity transport equation [12]:

Dw/
- Vp/x VP. (2.15)

Dt

Note that the presence of the pressure gradient in the mean flow (i.e., non-uniformity of the flow) leads

to non-zero right-hand side of above equation. Otherwise, the vorticity w/remains equal to zero as in an

irrotational mean flow. In turn, the non-zero w/leads to the non-zero source term in the energy equation



(2.10).Thevorticityisgeneratedwheretheacousticwavepasses,i.e. Vpt _ 0.Asfar asut is a multiplier

in the right-hand side of Eq. (2.10), the exchange of energy between the steady mean flow and the unsteady

disturbance occurs only in presence of the wave. The generated vorticity flows with the local speed of

background flow and eventually the vorticity is left behind the wave, that moves with the sonic speed. The

instantaneous pattern of the vorticity generation source and the acoustic energy source at t = 0.5 are shown

in Fig. 5. As expected, areas of maximum acoustic energy generation coincide with instantaneous positions

of the reflected and transmitted waves.

Approximately, the maximum value of the energy source term is located at the bisector direction (45°).

In Fig. 6, the acoustic energy and its source are shown as functions of the distance from the origin along the

bisector line at t = 0.5. The maximum value of the source is approximately one order of magnitude smaller

than that for the acoustic energy. Therefore, the local gain of acoustic energy is small in comparison with

the angular redistribution of acoustic energy and kinetic-to-potential transforms considered above.

3. Acoustic pulse in the 3-D stagnation flow. In this section we consider a spherical pulse prop-

agating in a 3-D stagnation flow. The 3-D stagnation flow with a single stagnation point at the origin is

denoted as Case 3-A and given by

W = -z, U = 0.5x, V = 0.5y. (3.1)

The stagnation flow with the stagnation line (Case 3-B) is

W=-z, U=x, V=0. (3.2)

The developed code is readily available for 3-D parallel computations as well [13].

In Case 3-A, the propagation of disturbance is described by the following system of equations

Ot

Ov

Ot
Ow

Ot

op
Ot

In Case 3-B, the governing system

_x Ou Ouo_ - ox°P+ o.5(-x - _- _ - xp) + _

Op + Ov Ov Ov
- o_ o.5(-_-_-v-_p)+ ZOZZ_

Op + Ow Ow Owo.5(-_ - _) + w - _p+Oz

oxOU oyOV OWoz+ o.5(-x - y_--Py)+ Z_z.

of equations is given by

Ou Op Ou Ou
Ot - Ox X_x -U-xp+ Z_z

Ov Op Ov Ov
Ot - Oy XOTx +zOTz'

Ow Op Ow Ow
Ot - Oz XO_x+W-zP+ZOTz'

Op _ On Ov Ow Op Op
Ot Ox Oy Oz x Ox + z Oz"

(3.3)

(3.4)

The initial 3-D spherical acoustic pulse is given by an expression similar to (2.9).

To validate the code, the computations are performed on a set of numerical grids where the wave spreads

under static ambient conditions and in presence of the rigid reflecting plate (Case 3-C). The analytic solution

for acoustic pressure in case of the infinite domain is given by

G

p --- _rr{(r - t) exp[-a(r - t) 2] + (r + t) exp[-a(r + t)2]}, (3.5)



wherer is the location of the pulse center at t = 0. Solution for the semi-infinite domain is obtained by use

of the image pulse located at -r :

p = p(r) + p(-r). (3.6)

Results of computations on 803 , 1203 , and 1603 grids are compared to the above analytic solution.

Profiles of the centerline acoustic pressure on the above set of grids at t = 0.5 are presented in Fig. 8. The

observations from the grid refinement study are similar to those obtained for the 2-D case (Section 2). The

numerical solution on the 1603 numerical grid practically coincides with the analytic solution and this grid

is used for numerical simulations.

To compare acoustic fields in Cases 3-A, 3-B, and 3-C, the isolines of acoustic pressure at t -- 0.5 are

shown in Fig. 9. In Cases 3-A and 3-C (Fig. 9a, b), the acoustic field is uniform with respect to the direction

in the x - y plane. The presence of the stagnation flow leads to amplification of sound at the neighborhood

of the centerline. In Case 3-B, the wave pattern is direction-dependent: the maximum elongation of the

wave pattern along the rigid plane occurs in the section x - z, whereas the minimum elongation is in the

section y - z. In the latter case, the elongation is closed to that for the Case 3-C (compare Fig. 9a to Fig.

9d). Yet, the centerline position of the pulse is the same in Cases 3-A and 3-B (see Fig. 9b,c, and d).

The centerline acoustic pressure for Cases 3-A and 3-B is presented together with its counterpart for the

Case 3-C at t = 0.5 in Fig. 10. In spite of the different wave pattern in Cases 3-A and 3-B, the centerline

profiles coincide for these cases. The amplification of acoustic pressure along the centerline is controlled

by redistribution of the potential and kinetic parts of acoustic energy in this direction as opposed to the

angular redistribution of acoustic energy (see the previous section). As far as the centerline profiles of the

mean velocity and pressure are the same in Cases 3-A and 3-B, the profiles of acoustic pressure appear to

be the same along the centerline. Note that this is quite a special situation where both the initial conditions

of pulse and the background flow velocity are the same along the streamline for two different flows.

The maximum acoustic pressure for the transmitted wave is two times larger in Cases 3-A and 3-B than

that in the Case 3-C. The maximum acoustic pressure for the reflected wave becomes about three times

larger in presence of stagnation flow than that for the static ambient conditions.

The amplification of sound in the 3-D case is larger than that in the 2-D case. Recall that in both cases

the background flow velocity and pressure are the same along the centerline. To get qualitative explanation

of such a difference, the analytic solutions for acoustic pressure at the centerline (static ambient conditions)

is presented for the 2-D and 3-D cases in Fig. 11a. The spatial derivative of acoustic pressure along the

centerline is shown in Fig. 11b. By inspection of Fig. 11a and by comparison of derivatives in Fig. 11b, one

can conclude that the back and front wave fronts are sharper in the 3-D case than those in the 2-D case.

The front of the wave propagating upstream move slower than the back of it, that leads to the amplification

of sound (see the previous section). The sharper the wave front is, the more prominent is the phenomenon.

Therefore, the 3-D pulse in a 3-D stagnation flow amplifies larger than that in the 2-D case.

4. Aeroacoustics of the flow over a circular cylinder. The propagation of sound waves from

a single acoustic pulse in the 2-D, inviscid irrotational, incompressible mean flow over an infinite circular

cylinder is considered here. The computational domain is shown in Fig. 12. The circle of unit diameter

(Rc_l = 0.5) is the inner boundary and a circle of 3.5 diameter is the outer boundary. At the outer boundary

the mean flow is practically uniform. The streamlines of the mean flow and the isobars of mean pressure are

computed analytically for potential flow [1] and presented in Fig. 12. The pulse is located at the centerline,

in some distance from the rigid cylinder. While the mean flow is directed from left to right, the acoustic



waves,originatedfromthe pulse,propagateupstreamof themeanflow. Otherwise,theacousticwaves
propagatedownstreamof themeanflow. Themeanflowin frontof thecylindercanbedescribedby the
incompressiblepotentialflowmodelfairlywellupto M -- 0.5. The after-body flow can be described by this

model when M _< 0.4. It has been shown that the flow streamlines around cylinder are quite similar to those

for incompressible flow if M _< 0.4. [14]. For higher Mach number, strong recirculating zones appear at the

rear part of the cylinder and the shock waves take place at the mid-section of the cylinder.

In polar (r, 0) coordinates, the equations of propagation of small disturbances in a known potential flow

are given by

Ou Op u Ou OU u OU 1 Ou OU OU 1Ot - Or Or Or -U_rP-r(V_+_v+V_P)-.p(V2-2Vv)

Ov _ 10p 1_ Ov Ov OV OV 1,0V OV 1 (pUV + Uv + Vu),ot tO0 rv_-Uor OrU-UTrP-r_V+V_P)-r

Op _ Ou U _ r u pU 1.Or OpOt Or r r r (_ + v_), (4.1)

where U, V, u, and v are radial and angular components of the mean flow velocity and disturbance velocity,

respectively. The mean flow velocity and its derivatives are computed by [1]. The initial acoustic pulse is

given by (2.9). The uniform grid 360 x 360 in polar computational space is used.

In Fig. 13, isobars of acoustic pressure at t = 0.5 are presented for upstream propagation of acoustic

pulse (Case CYL-A) at M = 0.5, downstream propagation of acoustic pulse (Case CYL-B) at M = 0.4, and

static ambient conditions (Case CYL-C). In Fig. 14, the centerline pressure distribution is presented for

these cases at time moments t -- 0.5, 1.0, 1.5, 2. In comparison with the Case CYL-C, the acoustic pressure

is amplified at the neighborhood of the centerline in the Case CYL-A and is weakened in the Case CYL-B.

To get the sound directivity at different Mach numbers for Cases CYL-A and CYL-B, the root mean

square of acoustic pressure is calculated by

(/0TPr,_8 = p2dt/T, (4.2)

where p is the acoustic pressure (p is equal to p) and T is the time period of summation. This time

period is chosen constant and equal for all numerical experiments presented below. For temporal numerical

integration, the integral in (4.2) is computed as sum of values of squares of acoustic pressure at all time steps

over the period, T. The p2 as a function of time for Cases CYL-A, CYL-B, and CYL-C at the centerline

location -5Rcvl is presented in Fig. 15. Curves have two stairs corresponding to passing transmitted and

reflected waves. The time period, T, covers the pass of both waves. The pr,_8 represents the time-averaged

potential part of acoustic energy passing through a fixed point in space.

In Fig. 16, the p_,_ is shown as function of angle a from the centerline while the radial coordinate is

equal to -5Rcvl. The curves are presented for various Mach numbers from M = -0.4 to M = 0.5 with step

0.1. The pressure pulse is located at the distance 0.25R_vl from the cylinder (Fig. 16a,b) and at the distance

0.5R_vl (Fig. 16c,d) at t = 0. The positive Mach numbers correspond to the Case CYL-A (Fig. 16a,c), the

negative Mach numbers represent the Case CYL-B (Fig. 16b,d), and the zero Mach number is the Case

CYL-C. The latter case is presented in (Fig. 16a-d) as a benchmark for comparison. The presented results

are normalized in such a way that the p_,_ at the centerline in the Case CYL-C is equal to unity.

The p_,_ increases with the Mach number and reaches 2.2 while M = 0.5 (Fig. 16a). Even far apart

from the centerline (a = 60°), the p_,_ for M = 0.5 is about twice as many as that for the Case CYL-C

(M = 0) in the same direction.



FortheCaseCYL-B,thePr,_8 reduces with the absolute value of the Mach number and becomes 0.65

at the centerline while M = -0.4. The level ofpr,_8 is smaller than that for the Case CYL-C up to (_ = 45 °.

The degree of increase and reduction of acoustic pressure is slightly bigger when the pulse is located more

close to wall (compare Fig. 16a,b with Fig. 16b,d). Note, that the difference between acoustic pressures

is quite small for these pulse locations in Case CYL-C. The reason for such a difference for non-zero Mach

numbers is that the reflected wave propagates in the direction opposite to the far-field sound before it hits

the wall. For instance, in the Case CYL-A the reflected wave propagates downstream before its reflection

from the cylinder and its acoustic pressure decreases.

5. Conclusions. The behavior of acoustic waves originating from the single pulse and propagated in

the non-uniform incompressible background flow is studied by numerical simulation using Hardin and Pope

approach. Higher-order compact spatial finite differences and Runge-Kutta temporal integration are used.

Results are compared to those obtained for the same geometry in the static ambient conditions.

It is shown, that the acoustic pressure is almost doubled while the waves propagate upstream of the

stagnation flow and the background flow reaches M -- 0.5. Alternation of the direction of stagnation flow

change the direction of sound propagation from perpendicular to a wall to parallel to it. Sound propagation

in a corner while in the presence of the background inviscid flow leads to amplification of sound and flattening

of acoustic waves.

In terms of acoustic energy, the modified sound directivity in the presence of stagnation flow is mainly

caused by redistribution of potential and kinetic components of acoustic energy (while sound propagates

upstream) and by angular redistribution of acoustic energy (while directions of the mean flow and sound

propagation are far from collinear). The pump of acoustic energy from the background flow by means of

baroclinically generated vorticity is minor.

The propagation of acoustic wave originated from spherical pulse in 3-D stagnation flows was considered

and the wave pattern in the neighborhood of the single stagnation point and the stagnation line are discussed.

The amplification of sound by a mean flow is more prominent in the 3-D case than in the 2-D case because

of steeper acoustic wave bounds.

Finally, the propagation of acoustic pulse in the flow around the 2-D circular cylinder is modeled.

The time-averaged root mean square of acoustic pressure (rms) is presented as function of angle from the

centerline. To compare with the static ambient conditions, the rms of acoustic pressure at the centerline

is approximately doubled (upstream pulse position, M -- 0.5) and halved (downstream pulse position,

M -- 0.4). The amplification (upstream pulse position) and weakening (downstream pulse position) of sound

holds for a large angular sector apart from the centerline.

This study can be expanded to cases where a compressible mean flow is computed by a CFD method and

the acoustic source distribution is extracted from appropriate turbulence modeling. Investigation of sound

amplification is expected to be important for higher Mach number flows where the velocity and pressure

gradients in the mean flow are larger than those in the low-Mach-number flows considered here.
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Appendix A. Mean-flowvariablesfor a flow between two straight streamlines.

In Cartesian coordinates, the stream-function is given by

= A(x 2 + y2)°'5nsin(n arctan(x/y)), (i.1)

The velocity field (U(x, y), V(x, y)) is computed by differentiation of the stream-function defined above

O_ O_ (A.2)
U(x,y) = _, V(x,y) - Ox

Using Mathematica [18], the following expressions for velocities and their derivatives are obtained

U(x, y) = Anr _-2 (x cos nO + y sin nO), (h.3)

V(x, y) = Anr _-2 (y cos nO - x sin nO), (h.4)

OU(x,y) _ Anr__a((n _ 1)(y 2 _ x2 ) cosn0 + 2(n - 1)xy sin nO), (i.5)
Ox

OU(x,y) _ Anr__a((n _ 1)(x 2 _ y2)sinn0 - 2(n - 1)xycosnO), (i.6)
Oy

where r = V/(x 2 + y2), and 0 = arctan(x/y).

For an incompressible and irrotational mean flow,

OU(x,y) OV(x,y) OU(x,y) OV(x,y)
Ox Oy ' Oy Ox

(A.7)
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a.

b.

F_c. 11. Acoustic pulse propagation and reJ_ection in static ambient conditions (analytic solution): a) centerline acoustic

pressure, b) the spatial derivative of acoustic pressure along the centerline. The direction of the x-coordinate coincides with

the centerline, graphs (1) and (2) denote 2-D cylindrical pulse (Case 2-B) and 3-D spherical pulse (Case 3-C), respectively.
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FIG. 15. Square of acoustic pressure. Here (1) is the Case CYL-A (M ---- 0.5), (2) is the Case CYL-B (M ----0.4), and (3)

is the Case CYL-C. Observer is located at the centerline at the distance 5Rcyl from the origin.
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